Image denoising based on the edge-process model
نویسندگان
چکیده
In this paper a novel stochastic image model in the transform domain is presented and its performance in image denoising application is experimentally validated. The proposed model exploits local subband image statistics and is based on geometrical priors. Contrarily to models based on local correlations, or mixture models, the proposed model performs a partition of the image into non-overlapping regions with distinctive statistics. A close form analytical solution of the image denoising problem for an additive white Gaussian noise (AWGN) is derived and its performance bounds are analyzed. Despite being very simple, the proposed stochastic image model provides a number of advantages in comparison to the existing approaches: (a) simplicity of stochastic image modeling; (b) completeness of the model, taking into account multiresolution, spatially adaptive image behavior, geometrical priors and providing an accurate fit to the global image statistics; (c) very low complexity of the algorithm; (d) tractability of the model and of the obtained results due to the closed-form solution and to the existence of analytical performance bounds; (e) extensibility to different transform domains, such as orthogonal, biorthogonal and overcomplete data representations. Data hiding capacity-security analysis for real images based on stochastic non-stationary geometrical models " , Debruitage d'images base sur le modèle de traitement des contours Résumé Dans cet article, un nouveau modèle stochastique pour les images dans le domaine transformée est présenté et ses performances pour les applications de débruitage sont expérimentallement validées. Le modèle proposé exploite les statistiques locales de l'image décomposée en sous-bandes et il est basé sur des primitives géométriques. Contrairement aux modèles basés sur des corrélationes locales ou aux modèles mixtes, le modèle proposé effectue une partition de l'image en des régions disjointes avec des statistiques distinctes. Une proche solution analytique auprobì eme de débruitage d'image pour un Bruit Blanc Gaussien Additif (BBGA) est obtenue et ses performance limites sont analysées. Malgré sa grande simplicité, le modèle stochastique proposé fournit de nombreux avantages en comparaison des approches existantes : (a) simplicité de la modélisation stochastique des images ; (b) complétude du modèle, offrant la multireésolution, un comportement spatialement adaptif, des primitives géométriques, un adjustement précis aux statistiques globales de l'image ; (c) très petite complexité de 1'algorithme; (d) tractabilité du modèle et des résultats obtenus dusà une solution analytique età l'existence de limites de performance analytiques; (e) extensibilitéà différents domaines transformée tels que les représentations orthogonales, biorthogonales et redondantes.
منابع مشابه
Comparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions
There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...
متن کاملStatistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملA Bayesian approach for image denoising in MRI
Magnetic Resonance Imaging (MRI) is a notable medical imaging technique that is based on Nuclear Magnetic Resonance (NMR). MRI is a safe imaging method with high contrast between soft tissues, which made it the most popular imaging technique in clinical applications. MR Imagechr('39')s visual quality plays a vital role in medical diagnostics that can be severely corrupted by existing noise duri...
متن کاملAn Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising
MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...
متن کاملA Novel NeighShrink Correction Algorithm in Image Denoising
Image denoising as a pre-processing stage is a used to preserve details, edges and global contrast without blurring the corrupted image. Among state-of-the-art algorithms, block shrinkage denoising is an effective and compatible method to suppress additive white Gaussian noise (AWGN). Traditional NeighShrink algorithm can remove the Gaussian noise significantly, but loses the edge information i...
متن کاملImage Restoration Using A PDE-Based Approach
Image restoration is an essential preprocessing step for many image analysis applications. In any image restoration techniques, keeping structure of the image unchanged is very important. Such structure in an image often corresponds to the region discontinuities and edges. The techniques based on partial differential equations, such as the heat equations, are receiving considerable attention i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing
دوره 85 شماره
صفحات -
تاریخ انتشار 2005